Convex solutions of polynomial-like iterative equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial solutions of differential equations

A new approach for investigating polynomial solutions of differential equations is proposed. It is based on elementary linear algebra. Any differential operator of the form L(y) = k=N ∑ k=0 ak(x)y, where ak is a polynomial of degree ≤ k, over an infinite ground field F has all eigenvalues in F in the space of polynomials of degree at most n, for all n. If these eigenvalues are distinct, then th...

متن کامل

Existence of Solutions for Iterative Differential Equations

The presence of self-mapping increases the difficulty in proving the existence of solutions for general iterative differential equation. In this article we provide conditions for the existence of solutions for the initial value problem, in which the conditions are natural and easily verifiable. We generalize the relevant results and point out the mistake in some references.

متن کامل

Rational Solutions of Underdetermined Polynomial Equations

In this paper we report on an application of computer algebra in which mathematical puzzles are generated of a type that had been widely used in mathematics contests by a large number of participants worldwide. The algorithmic aspect of our work provides a method to compute rational solutions of single polynomial equations that are typically large with 10 . . . 10 terms and that are heavily und...

متن کامل

Polynomial solutions of nonlinear integral equations

We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of C. Bender and E. Ben-Naim. We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

متن کامل

Polynomial solutions of differential-difference equations

1 We investigate the zeros of polynomial solutions to the differential-difference equation P n+1 (x) = A n (x)P ′ n (x) + B n (x)P n (x), n = 0, 1,. .. where A n and B n are polynomials of degree at most 2 and 1 respectively. We address the question of when the zeros are real and simple and whether the zeros of polynomials of adjacent degree are interlac-ing. Our result holds for general classe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.10.006